Radiation therapy

- A major cancer treatment (2/3 of patients)
- Use radiation to kill cancer cells.
- High energy x-ray

O Alternative with proton, carbon (in development)

- Challenge:
deliver maximum dose to target, while sparing healthy surrounding tissue

Image guided radiation therapy

Make heavy use of imaging

Treatment planning:
O Performed on CT
O Use fused MRI, PET

- Advanced development with 4D CT

In room image guidance

- CBCT Cone Beam CT

○
US image guidanceVideo, surface basedFuture: embedded MRI

Outline

■ Example1: lung cancer guidance with Cone-Beam CT

- Example2: lung cancer guidance with surface imaging
- Example2: prostate cancer guidance with US

Example 1

CONE-BEAM CT GUIDANCE

Lung cancer treatment strategy

- For locally advanced NSCLC (stage III)
- Poor 5y survival (<20\% France)

O Surgery impossible
○ RT 60-66 Gy, 30-33f (not hypofraction)

- Additional uncertainty: respiratory motion
- Consequences:

O Safety margins are increased
O Potential increased toxicity
O Treatment less effective or patient excluded

In room guidance

- Reconstruction from a set of 2D projection images
- Respiratory motion during acquisition (acquisition time > 1 min)

Registration

Planning CT (reference)

Daily CBCT

4D DVF - Deformable Image Registration

Methods

- Method1: motion compensated 4D reconstruction
- Method2: 2D/3D deformable registration

Non-corrected vs. Compensated

Slow acquisition (4 min)

Methods

- Method1: motion compensated 4D reconstruction
- Method2: 2D/3D deformable registration

No correction

[Rit et al, MedPhys 2009]
[Delmon et al, PMB, 2013]
[Delmon et al, PMB, 2014]

Prior model

2D/3D registration

Example 2
SURFACE IMAGING GUIDANCE

Surface imaging

Surface mesh

Dynamic surfaces around 7 Hz (now > 20 Hz)

Deformable mesh registration

Ed : distance between surfaces

- Es : stiffness term (rigidity)
- El : landmarks term (optional)
- T: Target surface

$$
\begin{gathered}
\boldsymbol{X}:=\left[\begin{array}{lll}
\boldsymbol{X}_{1} & \cdots & \boldsymbol{X}_{n}
\end{array}\right]^{T} \\
\boldsymbol{G}:=\operatorname{diag}(1,1,1, \gamma) \\
\mathcal{L}=\left\{\left(\boldsymbol{v}_{i_{1}}, \boldsymbol{l}_{1}\right), \ldots,\left(\boldsymbol{v}_{i_{l}}, \boldsymbol{l}_{l}\right)\right\}
\end{gathered}
$$

$$
E(\boldsymbol{X}):=E_{d}(\boldsymbol{X})+\alpha E_{s}(\boldsymbol{X})+\beta E_{l}(\boldsymbol{X})
$$

$$
\begin{aligned}
& E_{d}(\boldsymbol{X}):=\sum_{\boldsymbol{v}_{i} \in \mathcal{V}} w_{i} \operatorname{dist}^{2}\left(\mathcal{T}, \boldsymbol{X}_{i} \boldsymbol{v}_{i}\right) \\
& E_{s}(\boldsymbol{X}):=\sum_{\{i, j\} \in \mathcal{E}}\left\|\left(\boldsymbol{X}_{i}-\boldsymbol{X}_{j}\right) \boldsymbol{G}\right\|_{F}^{2} \\
& E_{l}(\boldsymbol{X}):=\sum_{\left(\boldsymbol{v}_{i}, \boldsymbol{l}\right) \in \mathcal{L}}\left\|\boldsymbol{X}_{i} \boldsymbol{v}_{i}-\boldsymbol{l}\right\|^{2}
\end{aligned}
$$

Validation

Some results

- TRE lower than 4 mm
- Thoracic errors > abdominal errors
- Too slow (now possible in real time)

Feasible ...

... not really used in clinic

Example 3

US GUIDANCE FOR PROSTATE CANCER TREATMENT

Prostate cancer

Hypofractionated treatment

- Less fraction, higher dose

O Could be beneficial [1,2]
O Higher accuracy needed

[1] King et al. International Journal of Radiation Oncology Biology Physics, (2012)
[2] Engels et al. Radiotherapy and Oncology, (2014)

Ultrasound image guidance

Registration US-US

Reference planning CT and US

Registration bw reference US
\& current US

Continuous registration

Dosimetric results

- Loss of PTV coverage of $\mathbf{1 1 \%}$ ($7 \mathrm{~Gy} / \mathrm{f}$) for the patient with the largest motion

CONCLUSION

Conclusion

Context : radiation therapy
Not directly "interventional", but in-room image guidance Direct impact on treatment outcome

■ Cone-Beam CT, surface monitoring, Ultrasound, On-board MRI?

- Clinical trials
- A key class of algorithms: Deformable Image Registration

Interested?vv.creatis.insa-lyon.frwww.openrtk.org
○ www.creatis.insa-lyon.fr/rio/popi-model

open source

Acknowledgements

Simon Rit
Marie Claude Biston
Myriam Ayadi
Line Claude
Pascal Pommier
Marie Vargier-Voiron
Jef Vandemeulebroucke
Gauthier Bouilhol
Romulo Pinho

Vivien Delmon
Agata Krason
Thomas Baudier
Joel Schaerer

Crentis

CENTRE DE LUTTE CONTRE LE CANCER LEON BERARD

