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Radiation therapy 

n  A major cancer treatment (2/3 of patients) 
n  Use radiation to kill cancer cells.  

¡  High energy x-ray 
¡  Alternative with proton, carbon (in development) 

n  Challenge: 
 deliver maximum dose to target, while sparing healthy  
 surrounding tissue 
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Image guided radiation therapy 

Make heavy use of imaging 

Treatment planning: 
¡  Performed on CT 
¡  Use fused MRI, PET 
¡  Advanced development with 4D CT 

In room image guidance 
¡  CBCT Cone Beam CT 
¡  US image guidance 
¡  Video, surface based 
¡  Future: embedded MRI  
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Outline 

n  Example1: lung cancer guidance with Cone-Beam CT 

n  Example2: lung cancer guidance with surface imaging 

n  Example2: prostate cancer guidance with US 
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CONE-BEAM CT GUIDANCE 
Example 1 
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Lung cancer treatment strategy 

n  For locally advanced NSCLC (stage III) 
¡  Poor 5y survival (<20% France) 
¡  Surgery impossible 
¡  RT 60-66 Gy, 30-33f (not hypofraction) 

n  Additional uncertainty: respiratory motion 
n  Consequences:  

¡  Safety margins are increased 
¡  Potential increased toxicity 
¡  Treatment less effective or patient excluded 

5 
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n  Reconstruction from a set of 2D projection images 
n  Respiratory motion during acquisition 

(acquisition time > 1 min) 

In room guidance 
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Registration 

Planning CT (reference) Daily CBCT 
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4D DVF – Deformable Image Registration 

8 
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Methods 

n  Method1: motion compensated 4D reconstruction 
n  Method2: 2D/3D deformable registration  

Slow acquisition (4 min) 

Non-corrected vs. 
Compensated 
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Methods 

n  Method1: motion compensated 4D reconstruction 
n  Method2: 2D/3D deformable registration  

No correction Prior model 2D/3D registration 

[Rit et al, MedPhys 2009] 
[Delmon et al, PMB, 2013] 
[Delmon et al, PMB, 2014] 
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SURFACE IMAGING 
GUIDANCE 

Example 2 
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Surface imaging Multi-dimensional respiratory motion tracking from markerless optical surface imaging 361

(a) (b)

Figure 1. (a) AlignRT optical system installed in the radiotherapy treatment room where subject
acquisitions were performed. The system is composed of two imaging pods placed symmetrically
with respect to the treatment couch. Data from both pods are merged to form an integrated surface
model (b).

(a) (b)

Figure 2. (a) Star-shaped black markers placed on the thoraco-abdominal surface of a test subject.
(b) Corresponding textured mesh acquired with the AlignRT optical system, showing the structured
light pattern projected on the subject surface. Due to the presence of holes in the reconstructed
mesh, the marker on the rightmost part of the abdomen could not be identified.

Ten black star-shaped markers were placed on different parts of the thorax and abdomen of
the subjects (figure 2(a)). The texturing capabilities of the AlignRT system, providing the
grey level representation of the reconstructed meshes, were used for the visualization and
identification of the control points (figure 2(b)). Such textured information is available only
for static mesh acquisition. The vertices of the star-shaped markers were manually selected on
the acquired textured surfaces, and the centroids of each marker were computed by averaging
the corresponding vertices. Depending on the marker location for the different subjects, the
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Surface mesh 

Dynamic surfaces around 7 Hz 
(now > 20 Hz) 
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Figure 3. The template surface S (green) is deformed by locally
affine transformations (Xi) onto the target surface T (red). The
algorithm determines closest points (ui) for each displaced source
vertex (Xivi) and finds the optimal deformation for the stiffness
used in this iteration. This is repeated until a stable state is found.
The process then continues with a lower stiffness. Due to the stiff-
ness constraint the vertices do not move directly towards the target
surface, but may move parallel along it. The correspondences u1

and u4 are dropped as they lie on the border of the target.

Finding a deformation for a fixed stiffness is done in the
inner loop. Preliminary correspondences are found by a
nearest point search. Then the optimal deformation of the
template for these correspondences and the fixed stiffness is
determined. Due to the stiffness of the template the points
do not move directly towards their preliminary correspon-
dences, but may move parallel to the target surface. The
new template position gives rise to a new set of preliminary
correspondences, which are used in the next iteration. This
is repeated until the process converges. The stiffness is then
lowered and the search continued.

Figure 3 shows a detail of an intermediate step of the
registration. The template has moved towards the target,
but due to the stiffness constraint it is not yet inside the tar-
get surface. The correspondence points ui of the deformed
template S(X) change in each iteration.

Nonrigid optimal step ICP algorithms can be constructed
for different regularisers, as long as the regulariser has a
stiffness parameter determining the amount of acceptable
local deformation. For the locally affine regularisation in-
troduced in the first part of this section we show now how
to determine the optimal deformation for fixed stiffness and
correspondence. In Section 5 another regulariser is intro-
duced and their performance is compared.

4.2. Efficient and robust minimization

Contrary to the approach of [1] we find in each step the
optimal deformation for fixed stiffness and fixed correspon-
dence. This is superior to using a “black-box”-optimiser di-
rectly on Equation (5), as the stiffness term is defined only
over neighbouring vertices, and propagation of stiffness in-
formation over multiple edges is slow and fragile. While
a general optimiser uses the fixed correspondences only to
determine approximate gradients which influence the new
search direction, we show how to make full use of the cor-
respondence information by finding the optimal deforma-

tion in each step of the algorithm.
When correspondences are fixed, the cost function be-

comes a sparse quadratic system which can be minimised
exactly. To adapt the cost function to fixed correspon-
dences, only the first term has to be changed. In this section
Equation (5) is rewritten for fixed correspondences using
matrix expressions.

¯E(X) :=

¯Ed(X) + ↵Es(X) + �El(X) (6)

By repeated minimization of ¯E a local minimum of E is
found.

Distance Term Assuming fixed correspondences
(vi,ui), the distance term defined in Equation (2) becomes

¯Ed(X) :=

X

vi2V
wikXivi � uik2 (7)
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where W := diag(w1, . . . , wn). (The n⇥n identity matrix
is denoted by In and the Kronecker product by ⌦). Recall
that the unknowns are the submatrices Xi. As this formu-
lation does not lend itself to being differentiated easily we
bring the equation into canonical form by swapping the po-
sitions of the unknowns and the fixed vertices vi. We define
the sparse matrix D mapping the 4n⇥3 matrix of unknowns
X onto displaced source vertices as

D :=
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Arranging the correspondence points in a matrix U :=⇥
u1, . . . ,un

⇤T , the distance term can be written as:

¯Ed(X) = kW (DX �U)k2F . (9)

The identity of these expressions comes directly from the
definition of the matrix product.

Stiffness Term The stiffness term penalises differences
between the transformation matrices assigned to neighbour-
ing vertices. To express this in matrix notation, we use the
node-arc incidence matrix M (e.g. Dekker [7]) of the tem-
plate mesh topology. This matrix is defined for directed
graphs. It contains one row for each arc (edge) of the graph
and one column per node (vertex). To construct a node-
arc incidence matrix from the source topology, the edges

n  Ed : distance between surfaces 
n  Es : stiffness term (rigidity)  
n  El : landmarks term (optional) 
n  T : Target surface 

Deformable mesh registration 

4. Method
In this section the regularisation used in this paper is in-

troduced, and nonrigid optimal step ICP algorithms are de-
fined. The template S = (V, E) is given as a set of n ver-
tices V and a set of m edges E . The target surface T can
be given in any representation that allows to find the clos-
est point on the surface for any point in 3D-space. We use
a triangulated mesh. Registration means finding parame-
ters X describing a set of displaced source vertices V(X).
After registration V(X) is projected onto the target surface
along the normals of the deformed template to give the fi-
nal correspondences. The projected vertices define – to-
gether with the original topology of the template mesh – a
reparametrised version of the original scan.

Locally affine regularisation The cost function used in
this paper to determine the warping is similar to the one
defined in [1]. The difference is, that by expressing the al-
gorithm in the nonrigid optimal step ICP framework we are
able to simplify it for fixed correspondences such that it is a
quadratic function which can be solved directly and exactly.
Additionally a slightly different norm, which includes the
norm from [1] as a special case, is used.

The proposed parametrization of the mapping is one
affine 3 ⇥ 4 transformation matrix Xi per template vertex.
The unknowns are organised in a 4n ⇥ 3 matrix

X :=

⇥
X1 · · · Xn

⇤T
. (1)

Naturally the distance between the deformed template
and the target should be small. This is expressed by the
first term of the cost function used in this paper:

Ed(X) :=

X

vi2V
wi dist

2
(T ,Xivi) (2)

To improve readability, we assume that template vertices are
given in homogeneous coordinates vi =

⇥
x, y, z, 1

⇤T . The
distance between a point v and its closest point on the target
surface is denoted as dist(T ,v). A hierarchical bounding
spheres structure is used to speed up nearest point search to
O(log2 t) in the number of target triangles. The reliability
of the match is weighted by wi. The weights are set to zero
for vertices where no corresponding vertex could be found.
For the other vertices the weight is set to one. If an addi-
tional estimate of the reliability is available, e.g. from the
scanner, the weights can be set accordingly.

An additional stiffness term is used to regularise the de-
formation. We penalise the weighted difference of the trans-
formations of neighbouring vertices under the Frobenius
norm k·kF using a weighting matrix G := diag(1, 1, 1, �).

Es(X) :=

X

{i,j}2E

k(Xi �Xj)Gk2
F (3)

� can be used to weight differences in the rotational and
skew part of the deformation against the translational part
of the deformation. The choice of � depends on the units
of the data, and on the type of deformation that shall be
expressed. In the experiments presented here � was set to
one and the data was scaled into the [�1, 1]

3 cube.
While the displacement of a vertex can be described by

only three parameters, we use twelve parameters per ver-
tex. This will allow us to write the cost as a quadratic
function. Constructing a cost function for this regularisa-
tion term with only three parameters per vertex results in a
minimization problem which can not be solved directly.

The third contributor to the cost function is a sim-
ple landmark term, used for initialization and guid-
ance of the registration. Given a set of landmarks
L = {(vi1 , l1), . . . , (vil , ll)} mapping template vertices
into the target surface the landmark cost is defined as

El(X) :=

X

(vi, l)2L

kXivi � lk2 . (4)

As demonstrated in Section 5, the correct registration can be
found even without landmarks. Without landmarks the cost
function has global minima where the template is collapsed
onto a point on the target surface, but the local minimum
corresponding to the correct registration can be found for a
wide range of initial conditions.

The full cost function is a weighted sum of these terms

E(X) := Ed(X) + ↵Es(X) + �El(X) . (5)

The stiffness weight ↵ influences the flexibility of the tem-
plate, while the landmark weight � is used to fade out the
importance of the potentially noisy landmarks towards the
end of the registration process.

Contrary to [1] we use a modified ICP algorithm to effi-
ciently and accurately minimise Equation (5).

4.1. Nonrigid optimal step ICP algorithms

The following steps constitute a nonrigid optimal step
ICP algorithm:
• Initialise X

0.
• For each stiffness ↵i 2 {↵1, . . . ,↵n}, ↵i > ↵i+1

� Until kXj �X

j�1k < "
⇧ Find preliminary correspondences for V(X

j�1
).

⇧ Determine X

j as the optimal deformation for the
preliminary correspondences and ↵i.

It consists of two loops. The outer loop finds a series of
deformations of the template that bring the template ever
closer to the target. Starting with a strongly regularised
(stiff) deformation global alignment is recovered and then
successively lower stiffness weights are used, allowing for
more localised deformations.
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⇤T . The
distance between a point v and its closest point on the target
surface is denoted as dist(T ,v). A hierarchical bounding
spheres structure is used to speed up nearest point search to
O(log2 t) in the number of target triangles. The reliability
of the match is weighted by wi. The weights are set to zero
for vertices where no corresponding vertex could be found.
For the other vertices the weight is set to one. If an addi-
tional estimate of the reliability is available, e.g. from the
scanner, the weights can be set accordingly.

An additional stiffness term is used to regularise the de-
formation. We penalise the weighted difference of the trans-
formations of neighbouring vertices under the Frobenius
norm k·kF using a weighting matrix G := diag(1, 1, 1, �).
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� can be used to weight differences in the rotational and
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of the deformation. The choice of � depends on the units
of the data, and on the type of deformation that shall be
expressed. In the experiments presented here � was set to
one and the data was scaled into the [�1, 1]
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While the displacement of a vertex can be described by

only three parameters, we use twelve parameters per ver-
tex. This will allow us to write the cost as a quadratic
function. Constructing a cost function for this regularisa-
tion term with only three parameters per vertex results in a
minimization problem which can not be solved directly.

The third contributor to the cost function is a sim-
ple landmark term, used for initialization and guid-
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L = {(vi1 , l1), . . . , (vil , ll)} mapping template vertices
into the target surface the landmark cost is defined as
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As demonstrated in Section 5, the correct registration can be
found even without landmarks. Without landmarks the cost
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onto a point on the target surface, but the local minimum
corresponding to the correct registration can be found for a
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The stiffness weight ↵ influences the flexibility of the tem-
plate, while the landmark weight � is used to fade out the
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Contrary to [1] we use a modified ICP algorithm to effi-
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defined in [1]. The difference is, that by expressing the al-
gorithm in the nonrigid optimal step ICP framework we are
able to simplify it for fixed correspondences such that it is a
quadratic function which can be solved directly and exactly.
Additionally a slightly different norm, which includes the
norm from [1] as a special case, is used.

The proposed parametrization of the mapping is one
affine 3 ⇥ 4 transformation matrix Xi per template vertex.
The unknowns are organised in a 4n ⇥ 3 matrix

X :=

⇥
X1 · · · Xn

⇤T
. (1)

Naturally the distance between the deformed template
and the target should be small. This is expressed by the
first term of the cost function used in this paper:

Ed(X) :=

X

vi2V
wi dist

2
(T ,Xivi) (2)

To improve readability, we assume that template vertices are
given in homogeneous coordinates vi =

⇥
x, y, z, 1

⇤T . The
distance between a point v and its closest point on the target
surface is denoted as dist(T ,v). A hierarchical bounding
spheres structure is used to speed up nearest point search to
O(log2 t) in the number of target triangles. The reliability
of the match is weighted by wi. The weights are set to zero
for vertices where no corresponding vertex could be found.
For the other vertices the weight is set to one. If an addi-
tional estimate of the reliability is available, e.g. from the
scanner, the weights can be set accordingly.

An additional stiffness term is used to regularise the de-
formation. We penalise the weighted difference of the trans-
formations of neighbouring vertices under the Frobenius
norm k·kF using a weighting matrix G := diag(1, 1, 1, �).

Es(X) :=

X

{i,j}2E

k(Xi �Xj)Gk2
F (3)

� can be used to weight differences in the rotational and
skew part of the deformation against the translational part
of the deformation. The choice of � depends on the units
of the data, and on the type of deformation that shall be
expressed. In the experiments presented here � was set to
one and the data was scaled into the [�1, 1]

3 cube.
While the displacement of a vertex can be described by

only three parameters, we use twelve parameters per ver-
tex. This will allow us to write the cost as a quadratic
function. Constructing a cost function for this regularisa-
tion term with only three parameters per vertex results in a
minimization problem which can not be solved directly.

The third contributor to the cost function is a sim-
ple landmark term, used for initialization and guid-
ance of the registration. Given a set of landmarks
L = {(vi1 , l1), . . . , (vil , ll)} mapping template vertices
into the target surface the landmark cost is defined as

El(X) :=

X

(vi, l)2L

kXivi � lk2 . (4)

As demonstrated in Section 5, the correct registration can be
found even without landmarks. Without landmarks the cost
function has global minima where the template is collapsed
onto a point on the target surface, but the local minimum
corresponding to the correct registration can be found for a
wide range of initial conditions.

The full cost function is a weighted sum of these terms

E(X) := Ed(X) + ↵Es(X) + �El(X) . (5)

The stiffness weight ↵ influences the flexibility of the tem-
plate, while the landmark weight � is used to fade out the
importance of the potentially noisy landmarks towards the
end of the registration process.

Contrary to [1] we use a modified ICP algorithm to effi-
ciently and accurately minimise Equation (5).

4.1. Nonrigid optimal step ICP algorithms

The following steps constitute a nonrigid optimal step
ICP algorithm:
• Initialise X

0.
• For each stiffness ↵i 2 {↵1, . . . ,↵n}, ↵i > ↵i+1

� Until kXj �X

j�1k < "
⇧ Find preliminary correspondences for V(X

j�1
).

⇧ Determine X

j as the optimal deformation for the
preliminary correspondences and ↵i.

It consists of two loops. The outer loop finds a series of
deformations of the template that bring the template ever
closer to the target. Starting with a strongly regularised
(stiff) deformation global alignment is recovered and then
successively lower stiffness weights are used, allowing for
more localised deformations.

4. Method
In this section the regularisation used in this paper is in-

troduced, and nonrigid optimal step ICP algorithms are de-
fined. The template S = (V, E) is given as a set of n ver-
tices V and a set of m edges E . The target surface T can
be given in any representation that allows to find the clos-
est point on the surface for any point in 3D-space. We use
a triangulated mesh. Registration means finding parame-
ters X describing a set of displaced source vertices V(X).
After registration V(X) is projected onto the target surface
along the normals of the deformed template to give the fi-
nal correspondences. The projected vertices define – to-
gether with the original topology of the template mesh – a
reparametrised version of the original scan.

Locally affine regularisation The cost function used in
this paper to determine the warping is similar to the one
defined in [1]. The difference is, that by expressing the al-
gorithm in the nonrigid optimal step ICP framework we are
able to simplify it for fixed correspondences such that it is a
quadratic function which can be solved directly and exactly.
Additionally a slightly different norm, which includes the
norm from [1] as a special case, is used.

The proposed parametrization of the mapping is one
affine 3 ⇥ 4 transformation matrix Xi per template vertex.
The unknowns are organised in a 4n ⇥ 3 matrix

X :=

⇥
X1 · · · Xn

⇤T
. (1)

Naturally the distance between the deformed template
and the target should be small. This is expressed by the
first term of the cost function used in this paper:

Ed(X) :=

X

vi2V
wi dist

2
(T ,Xivi) (2)

To improve readability, we assume that template vertices are
given in homogeneous coordinates vi =

⇥
x, y, z, 1

⇤T . The
distance between a point v and its closest point on the target
surface is denoted as dist(T ,v). A hierarchical bounding
spheres structure is used to speed up nearest point search to
O(log2 t) in the number of target triangles. The reliability
of the match is weighted by wi. The weights are set to zero
for vertices where no corresponding vertex could be found.
For the other vertices the weight is set to one. If an addi-
tional estimate of the reliability is available, e.g. from the
scanner, the weights can be set accordingly.

An additional stiffness term is used to regularise the de-
formation. We penalise the weighted difference of the trans-
formations of neighbouring vertices under the Frobenius
norm k·kF using a weighting matrix G := diag(1, 1, 1, �).

Es(X) :=

X

{i,j}2E

k(Xi �Xj)Gk2
F (3)

� can be used to weight differences in the rotational and
skew part of the deformation against the translational part
of the deformation. The choice of � depends on the units
of the data, and on the type of deformation that shall be
expressed. In the experiments presented here � was set to
one and the data was scaled into the [�1, 1]

3 cube.
While the displacement of a vertex can be described by

only three parameters, we use twelve parameters per ver-
tex. This will allow us to write the cost as a quadratic
function. Constructing a cost function for this regularisa-
tion term with only three parameters per vertex results in a
minimization problem which can not be solved directly.

The third contributor to the cost function is a sim-
ple landmark term, used for initialization and guid-
ance of the registration. Given a set of landmarks
L = {(vi1 , l1), . . . , (vil , ll)} mapping template vertices
into the target surface the landmark cost is defined as

El(X) :=

X

(vi, l)2L

kXivi � lk2 . (4)

As demonstrated in Section 5, the correct registration can be
found even without landmarks. Without landmarks the cost
function has global minima where the template is collapsed
onto a point on the target surface, but the local minimum
corresponding to the correct registration can be found for a
wide range of initial conditions.

The full cost function is a weighted sum of these terms

E(X) := Ed(X) + ↵Es(X) + �El(X) . (5)

The stiffness weight ↵ influences the flexibility of the tem-
plate, while the landmark weight � is used to fade out the
importance of the potentially noisy landmarks towards the
end of the registration process.

Contrary to [1] we use a modified ICP algorithm to effi-
ciently and accurately minimise Equation (5).

4.1. Nonrigid optimal step ICP algorithms

The following steps constitute a nonrigid optimal step
ICP algorithm:
• Initialise X

0.
• For each stiffness ↵i 2 {↵1, . . . ,↵n}, ↵i > ↵i+1

� Until kXj �X

j�1k < "
⇧ Find preliminary correspondences for V(X

j�1
).

⇧ Determine X

j as the optimal deformation for the
preliminary correspondences and ↵i.

It consists of two loops. The outer loop finds a series of
deformations of the template that bring the template ever
closer to the target. Starting with a strongly regularised
(stiff) deformation global alignment is recovered and then
successively lower stiffness weights are used, allowing for
more localised deformations.



16 

Validation 
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(a) (b)

Figure 1. (a) AlignRT optical system installed in the radiotherapy treatment room where subject
acquisitions were performed. The system is composed of two imaging pods placed symmetrically
with respect to the treatment couch. Data from both pods are merged to form an integrated surface
model (b).

(a) (b)

Figure 2. (a) Star-shaped black markers placed on the thoraco-abdominal surface of a test subject.
(b) Corresponding textured mesh acquired with the AlignRT optical system, showing the structured
light pattern projected on the subject surface. Due to the presence of holes in the reconstructed
mesh, the marker on the rightmost part of the abdomen could not be identified.

Ten black star-shaped markers were placed on different parts of the thorax and abdomen of
the subjects (figure 2(a)). The texturing capabilities of the AlignRT system, providing the
grey level representation of the reconstructed meshes, were used for the visualization and
identification of the control points (figure 2(b)). Such textured information is available only
for static mesh acquisition. The vertices of the star-shaped markers were manually selected on
the acquired textured surfaces, and the centroids of each marker were computed by averaging
the corresponding vertices. Depending on the marker location for the different subjects, the
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Some results 

n  TRE lower than 4 mm 
n  Thoracic errors > abdominal errors 
n  Too slow (now possible in real time) 

Feasible … 
… not really used in clinic 

Multi-dimensional respiratory motion tracking from markerless optical surface imaging 367

Figure 6. Surface overlap at different breathing phases before and after deformable registration.
The colour-based intensities represent the surface distance in the initial condition (left panels)
and after performing deformable registration (right panels). As can be noticed in this figure, the
implemented registration algorithm is also able to recover head rotations.

registration algorithm. The signals depicted in the lower panels of the figure represent the
mean surface motion in the three spatial directions, obtained by averaging the SI, RL and AP
coordinates of the corresponding surface points generated by the algorithm. Twelve breathing
cycles of the patient could be identified, for a total acquisition time of 40 s. The contribution of
each surface point to the respiratory signals in the different anatomical directions is represented
in the upper panels of the figure. This contribution is computed through PCA analysis, by
projecting in the principal component space the surface point motion along different directions.

Figure 11 shows the respiratory signal acquired with the GateCT system during a lung
cancer treatment, compared to the AP motion estimated with deformable registration for three
surface points selected in the thoracic and abdominal regions. While the GateCT system
provides the respiratory information on a limited surface patch, the proposed method yields
the 3D motion of any points on the thoraco-abdominal surface. This approach allows us to

[Schaerer et al, PMB 2012] 
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US GUIDANCE FOR 
PROSTATE CANCER 
TREATMENT 

Example 3 
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Prostate cancer 

n  Hypofractionated treatment 
¡  Less fraction, higher dose 
¡  Could be beneficial [1,2] 
¡  Higher accuracy needed 

[1] King et al. International Journal of Radiation Oncology Biology Physics, (2012) 
[2] Engels et al. Radiotherapy and Oncology, (2014) 
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Ultrasound image guidance 

Screen  

Knee fix 

TP probe 

Frame 

Table 
position 
captor 
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Registration US-US  

Reference planning 
CT and US 
 
Registration bw 
   reference US 
   & current US  
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Continuous registration 
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Dosimetric results 

•  Bladder wall  = Higher doses  1.3 ± 1%  vs  1.7 ± 3.6% 
•  Rectal wall  = Lower doses  -1.2 ± 1.3%  vs  -1.7 ± 4% 
•  PTV (V95%)  = loss of coverage  -1.8 ± 1.9%  vs  -3.9 ± 3.5% 

•  Loss of PTV coverage of 11% (7Gy/f) for the patient with the largest motion 

2Gy/f conventional 7Gy/f hypofractionated 

Rectal wall Bladder wall PTV CTV No shifts Shifts 
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CONCLUSION 
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Conclusion 

Context : radiation therapy 
Not directly “interventional”, but in-room image guidance 
Direct impact on treatment outcome 
 
n  Cone-Beam CT, surface monitoring, Ultrasound, On-board MRI ? 
n  Clinical trials 
n  A key class of algorithms: Deformable Image Registration 

Interested ?  
¡  vv.creatis.insa-lyon.fr  
¡  www.openrtk.org  
¡  www.creatis.insa-lyon.fr/rio/popi-model  
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